Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

The diphyllosilicate $\mathbf{R b}_{\mathbf{2}}(\mathrm{VO})_{2}\left[\mathrm{Si}_{8} \mathrm{O}_{19}\right]$

Sebastian Prinz,* Karine M. Sparta and Georg Roth

Institut für Kristallographie der RWTH Aachen, Jägerstrasse 17-19, 52066 Aachen, Germany
Correspondence e-mail: prinz@xtal.rwth-aachen.de

Received 7 December 2007
Accepted 21 December 2007
Online 16 February 2008
Dirubidium divanadyl phyllooctasilicate, $\mathrm{Rb}_{2}(\mathrm{VO})_{2}\left[\mathrm{Si}_{8} \mathrm{O}_{19}\right]$, is the first known anhydrous diphyllosilicate containing V^{IV}. The structure consists of silicate double layers which are separated by $\left[\mathrm{V}_{2} \mathrm{O}_{8}\right]^{8-}$ dimers and is related to that of the compounds $A_{2} \mathrm{Cu}_{2}\left[\mathrm{Si}_{8} \mathrm{O}_{19}\right]$ ($A=\mathrm{Rb}$ or Cs), although the title compound crystallizes in a noncentrosymmetric orthorhombic space group. The silicate double layers contain four tetrahedrally coordinated Si sites in general positions and 12 O sites, nine in general positions and the other three on mirror planes. The vanadyl dimers have two square-pyramidally coordinated V sites (site symmetry m). There are two different $10-$ and $12-$ fold coordinated Rb sites with site symmetry m, one of which is a split position located between the dimers in the interlayer space, while the other is in a channel within the silicate layer.

Comment

Low-dimensional V^{IV} and mixed-valent $\mathrm{V}^{\mathrm{IV}, \mathrm{V}}$ compounds are of great interest because of their peculiar magnetic properties, as evidenced by the two-dimensional spin-gap compound $\mathrm{CaV}_{4} \mathrm{O}_{9}$ (Taniguchi et al., 1995) or the spin-Peierls system $\alpha-\mathrm{NaV}_{2} \mathrm{O}_{5}$ (Smolinski et al., 1998). Among the few known silicates containing $\mathrm{V}^{\mathrm{IV}}, \mathrm{Li}_{2}(\mathrm{VO}) \mathrm{SiO}_{4}$ has been considered an ideal example of a frustrated two-dimensional square-lattice antiferromagnet (Millet \& Satto, 1998). Likewise, few anhydrous double-layer silicates have been reported, among them the $\mathrm{Cu}^{\mathrm{II}}$-bearing compounds of general formula $A_{2} \mathrm{Cu}_{2}\left[\mathrm{Si}_{8} \mathrm{O}_{19}\right](A=\mathrm{Rb}$ or Cs) (Heinrich \& Gramlich, 1982; Watanabe \& Kawahara, 1993). These two isomorphous compounds crystallize in the space group $P 2_{1} / m$. The staggered silicate double layers consist of corner-sharing SiO_{4} tetrahedra, with $\left[\mathrm{Cu}_{2} \mathrm{O}_{6}\right]^{8-}$ dimers (formed by two tetrahedrally distorted square-planar edge-sharing CuO_{4} units) interleaved between adjacent double layers.

The title vanadyl compound (Figs. 1-3) is related to the copper phases but differs in certain key respects. Firstly it crystallizes in the noncentrosymmetric space group $P m c 2_{1}$, and secondly the silicate double layers of the vanadyl compound are linked differently from those in the copper compounds. In both structures, each single sheet can be described in terms of rings of six corner-sharing SiO_{4} tetra-
hedra which link adjacent single sheets into a double layer (Figs. 1 and 3). Two crystallographically distinct silicate rings can be distinguished in the title compound. In the first kind of silicate ring, five of the six SiO_{4} tetrahedra are bonded to neighbouring SiO_{4} tetrahedra in the $b c$ plane; only the $\mathrm{Si}_{4} \mathrm{O}_{4}$ tetrahedra of adjacent silicate layers share corners and link the sheets into a double layer. In the second kind of silicate ring,

Figure 1
A view of the $\mathrm{Rb}_{2}(\mathrm{VO})_{2}\left[\mathrm{Si}_{8} \mathrm{O}_{19}\right]$ structure in a perspective $a b$ projection. Displacement ellipsoids are drawn at the 50% probability level and the unit cell is indicated by black lines. VO_{5} square pyramids are dark and SiO_{4} tetrahedra are light. Note the Rb filled channels along c.

Figure 2
A view of the Si and V polyhedra that make up the framework of $\mathrm{Rb}_{2}(\mathrm{VO})_{2}\left[\mathrm{Si}_{8} \mathrm{O}_{19}\right]$. Displacement ellipsoids are drawn at the 50% probability level. The $\left[\mathrm{V}_{2} \mathrm{O}_{8}\right]^{8-}$ dimer is linked to the $\mathrm{Si} 1 \mathrm{O}_{4}, \mathrm{Si} 2 \mathrm{O}_{4}$ and ${\mathrm{Si} 3 \mathrm{O}_{4}}$ tetrahedra via corner sharing, while the $\mathrm{Si4O}_{4}$ tetrahedra interlink the separate silicate layers of a double layer by sharing atom O10. [Symmetry codes: (ii) $-x, y, z$; (iii) $x,-y+1, z+\frac{1}{2}$; (iv) $x, y+1, z$.]
there are two $\mathrm{Si}_{4} \mathrm{O}_{4}$ tetrahedra per ring that link adjacent silicate sheets. In the copper compounds, in contrast, there is only one type of six-membered ring, with two linking SiO_{4} tetrahedra in neighbouring positions.

In the title compound, $\left[\mathrm{V}_{2} \mathrm{O}_{8}\right]^{8-}$ dimers of edge-sharing VO_{5} pyramids, replacing the $\left[\mathrm{Cu}_{2} \mathrm{O}_{6}\right]^{8-}$ dimers, link adjacent silicate double layers (Fig. 1). The two independent V atoms occupy special positions of site symmetry m. The squarepyramidal oxygen coordination, with one short vanadyl bond and four basal $\mathrm{V}-\mathrm{O}$ bonds that are almost equal in length, is typical of V^{IV} (Schindler et al., 2000). The pyramidal bases are inclined with respect to each other around the common O5O5 ${ }^{\text {ii }}$ edge [symmetry code: (ii) $-x, y, z$]; the apices show a synorthogonal arrangement (Plass, 1996), i.e. they both point to the same side of the dimeric unit (Fig. 2), which has rarely been observed in other substances. The V1-O12 ${ }^{\mathrm{i}}$ and $\mathrm{V} 2-$ $\mathrm{O} 12^{\mathrm{i}}$ distances [symmetry code: (i) $-x,-y+1, z-\frac{1}{2}$] between the apical O atom of the $\mathrm{V}_{2} \mathrm{O}_{5}$ pyramid and its next V 1 and V 2 neighbours along c are longer than the value of $2.6 \AA$ usually considered the upper limit for a valid $\mathrm{V}-\mathrm{O}$ distance of the trans bonds in $[1+4+1]$ coordination (Schindler et al., 2000). Therefore, the V coordination is discussed in terms of VO_{5} pyramids sharing edges rather than distorted VO_{6} octahedra sharing faces.

The disordered $\mathrm{Rb} 1 / \mathrm{Rb} 1^{\prime}$ ions are located in between the dimers in channels parallel to c, while the Rb 2 ions are enclosed within the double layers. In a projection on to the $b c$ plane, they can be seen to occupy the channels formed by the

Figure 3
A view of the $\mathrm{Rb}_{2}(\mathrm{VO})_{2}\left[\mathrm{Si}_{8} \mathrm{O}_{19}\right]$ structure in a perspective $b c$ projection. Displacement ellipsoids are drawn at the 50% probability level and the unit cell is indicated by black lines. VO_{5} square pyramids are dark and SiO_{4} tetrahedra are light. Note the zigzag pattern of channels occupied by Rb 2 and the empty channels with two linking $\mathrm{Si}_{\mathrm{i}} 4 \mathrm{O}_{4}$ tetrahedra per sixtetrahedron ring.
six-tetrahedron silicate rings parallel to a in a zigzag manner (Fig. 3). Rb1/Rb1' are partially disordered sites that are $10-$ fold coordinated by oxygen, with $\mathrm{Rb}-\mathrm{O}$ distances ranges of 2.849 (4)-3.585 (4) and 2.837 (7)-3.366 (6) \AA, respectively. The Rb 2 site is 12 -fold coordinated by oxygen (distorted hexagonal prism), with $\mathrm{Rb}-\mathrm{O}$ distances in the range 3.087 (3)-3.352 (3) Å.

Experimental

RbVO_{3} was prepared by the decomposition of stoichiometric amounts of $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ in the presence of $\mathrm{V}_{2} \mathrm{O}_{5}$ in air. The resulting single-phase RbVO_{3} powder and $\mathrm{V}_{2} \mathrm{O}_{3}$ were mixed in the molar ratio 2:1 and an excess amount of SiO_{2} was added. The mixture was sealed in an evacuated SiO_{2} glass ampoule and heated in a furnace at 1123 K for 5 d , followed by subsequent furnace cooling. From the dark-grey powder obtained, blue-green plate-shaped crystals were isolated, which were suitable for analysis by single-crystal X-ray diffraction.

Crystal data

$\mathrm{Rb}_{2}(\mathrm{VO})_{2}\left[\mathrm{Si}_{8} \mathrm{O}_{19}\right]$
$M_{r}=833.54$
Orthorhombic, $P_{\circ} m c 2_{1}$
$a=11.0513$ (9) £
$b=10.2765$ (6) \AA
$c=8.7052$ (6) \AA

Data collection

Stoe IPDSII image-plate
diffractometer
Absorption correction: numerical (X-SHAPE; Stoe \& Cie, 1996) $T_{\text {min }}=0.251, T_{\text {max }}=0.648$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.065$
$S=1.10$
4022 reflections
165 parameters
2 restraints
$V=988.64(12) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=6.43 \mathrm{~mm}^{-1}$
$T=301$ (2) K
$0.3 \times 0.2 \times 0.08 \mathrm{~mm}$

37398 measured reflections
4022 independent reflections 3669 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.069$
$\Delta \rho_{\text {max }}=0.61 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.64 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), with 2128 Friedel pairs
Flack parameter: -0.004 (6)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

V1-O11	$1.590(4)$	$\mathrm{V} 1-\mathrm{V} 2$	$3.1525(9)$
V1-O3	$1.949(2)$	$\mathrm{V} 2-\mathrm{O} 12$	$1.595(4)$
V1-O5	$2.029(2)$	$\mathrm{V} 2-\mathrm{O} 8$	$1.941(2)$
V1-O12	$2.836(4)$	$\mathrm{V} 2-\mathrm{O} 5$	$2.021(2)$
O11-V1-O3	$104.31(13)$	$\mathrm{O} 12-\mathrm{V} 2-\mathrm{O} 8$	$104.83(12)$
O11-V1-O5	$101.99(13)$	$\mathrm{O} 12-\mathrm{V} 2-\mathrm{O} 5$	$105.33(12)$
$\mathrm{O} 3-\mathrm{V} 1-\mathrm{O} 5$	$92.17(9)$	$\mathrm{O} 8-\mathrm{V} 2-\mathrm{O} 5$	$88.86(8)$
Symmetry			

Symmetry code: (i) $-x,-y+1, z-\frac{1}{2}$.

During refinement, high maximum and minimum residual electron densities of $c a \pm 1.5$ e \AA^{-3} were observed. The highest peak was located very close to the Rb1 site. When a split position Rb1' was introduced, expressing the partial disorder of the Rb 1 site, the residual electron density was reduced substantially to $c a \pm 0.6$ e \AA^{-3}. The sum of the occupancies of the Rb 1 and $\mathrm{Rb} 1^{\prime}$ sites was restrained to be equal to 1 and they refined to values of 0.809 (4) and 0.191 (4), respectively. The anisotropic displacement parameters of the two sites were restrained to be equal.

inorganic compounds

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe \& Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors gratefully acknowledge the financial support of this work by the Deutsche Forschungsgemeinschaft (DFG).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3119). Services for accessing these data are described at the back of the journal.

References

Dowty, E. (2000). ATOMS for Windows. Version 5.1. Shape Software, Kingsport, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Heinrich, A. \& Gramlich, V. (1982). Naturwissenschaften, 69, 142-143.
Millet, P. \& Satto, C. (1998). Mater. Res. Bull. 33, 1339-1345.
Plass, W. (1996). Angew. Chem. Int. Ed. Engl. 35, 627-631.
Schindler, M., Hawthorne, F. C. \& Baur, W. H. (2000). Chem. Mater. 12, 12481259.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Smolinski, H., Gros, C., Weber, W., Peuchert, U., Roth, G., Weiden, M. \& Geibel, C. (1998). Phys. Rev. Lett. 80, 5164-5167.
Stoe \& Cie (1996). X-SHAPE and X-RED. Stoe \& Cie GmbH, Darmstadt, Germany.
Stoe \& Cie (2002). X-AREA. Stoe \& Cie GmbH, Darmstadt, Germany
Taniguchi, S., Nishikawa, T., Yasui, Y., Kobayashi, Y., Sato, M., Nishioka, T., Kontani, M. \& Sano, K. (1995). J. Phys. Soc. Jpn, 64, 2758-2761.
Watanabe, I. \& Kawahara, A. (1993). Acta Cryst. C49, 854-856.

